Introduction
The journey through the world of us ai gov guide is an adventure in learning and discovery. In us ai gov guide, we find a field that is rich in history and ripe with future potential. The ever-evolving nature of us ai gov guide makes it a constantly fascinating area of study.
Name | Description | Tags | Total Conversations | Try It |
---|---|---|---|---|
StepWiz | AI assisted guide for USMLE Step 1 using the best prep materials. | USMLE Step 1 Study Buddy, USMLE Step 2 Study Buddy - For Medical Students | 330 | Chat š |
US Feasibility Finder | AI for ARF USA Panel Feasibility Checks šš¬ | US AI Gov Guide, Arizona AI Assistance | 100 | Chat š |
GovAssist | AI Assistant for Local and Regional Governments | Comprehensive AI System Advisor for Australian Gov, GovDoc Assistant | 70 | Chat š |
AI Resource Navigator | AI Resource Navigator efficiently guides users to educational, financial, healthcare, and legal resources in the USA | AI Resource Navigator, Non-Profit Navigator: Your AI Assistant | 40 | Chat š |
U.S. Government Expert | Ask questions about how the U.S. Government works and how to accomplish your goals within the system. | U.S. Government Expert, US AI Gov Guide | 20 | Chat š |
Diplomatsā DEIA Strategist | AI expert in DEIA strategies for U.S. diplomatic missions & beyond (unofficial, unclassified, beta, do not enter SBU/PII, use at your own risk, not a U.S. State Department product, all rights reserved) | Diplomat AI, Cybersecurity Intelligence Agent (CIA) | 20 | Chat š |
Maple Advisor | AI-based immigration guide | Immigration Guide, Immigration Advisor | 20 | Chat š |
ICO guidance | Search everything on the ICO website | ICD11 Guide, ICSE Tutor | 8 | Chat š |
US AI Gov Guide | Expert AI.gov assistant | US AI Gov Guide, AI Advisor | 5 | Chat š |
USA | Concise guide on USA topics, with detailed insights on request. | US AI Gov Guide, Expert Guide on Any Topic | 1 | Chat š |
StepWiz š
AI assisted guide for USMLE Step 1 using the best prep materials.
Author: Zachary Schulman
Created Date: Unknown
Last Updated Date: Unknown
Categories: No Categories
Tags: USMLE Step 1 Study Buddy, USMLE Step 2 Study Buddy - For Medical Students, DIY Step-By-Step Guide, US AI Gov Guide, AI UX Design Guide
Welcome Message
Welcome! Iām StepWiz, ready to assist with your USMLE Step 1 studies.
Prompt Starters
- Can you explain renal physiology?
- How does the immune response work?
- What are the side effects of NSAIDs?
- Tell me about the pathology of osteoarthritis.
US Feasibility Finder š
AI for ARF USA Panel Feasibility Checks šš¬
Author: Angus Reid Group
Created Date: Unknown
Last Updated Date: Unknown
Categories: No Categories
Tags: US AI Gov Guide, Arizona AI Assistance, Florida AI Assistance, New Mexico AI Assistance, Texas AI Assistance
Welcome Message
Hi! Ready to explore survey data with whole-number insights? šš§®
Prompt Starters
- Age Gender (BROAD) Feasibility š š š¬š š§® š š» import pandas as pd # Load the dataset data = pd.read_csv(ā/mnt/data/Angus Reid Forum USA.csvā) # Preparing the data data[āResponse Rateā] = pd.to_numeric(data[āResponse Rateā], errors=ācoerceā) # Calculate feasibility feasibility = (data.groupby([āP_Region_FIPā, āAge x Gender Broadā])[āResponse Rateā] .apply(lambda x: int((x.count() * x.mean()))) .unstack(fill_value=0)) # Reordering columns columns_order = [āFemale 18-34ā, āFemale 35-54ā, āFemale 55 Plusā, āMale 18-34ā, āMale 35-54ā, āMale 55 Plusā] feasibility = feasibility[columns_order] # Adding row totals feasibility[āTotalā] = feasibility.sum(axis=1) # Reset index to display the regions feasibility.reset_index(inplace=True) # Adding column totals column_totals = feasibility.sum(numeric_only=True) column_totals[āP_Region_FIPā] = āTotalā feasibility = feasibility.append(column_totals, ignore_index=True) # Display the feasibility table with row and column totals print(feasibility)
- Age Gender (GENERATION) Feasibility š¶š§š§šµš“ - import pandas as pd # Load the dataset data = pd.read_csv(ā/mnt/data/Angus Reid Forum USA.csvā) # Preparing the data with āGenerationā data[āResponse Rateā] = pd.to_numeric(data[āResponse Rateā], errors=ācoerceā) data[āGender x Generationā] = data[āGenderā] + ā ā + data[āGenerationā] # Calculate feasibility using combined āGender x Generationā category feasibility_gen = (data.groupby([āP_Region_FIPā, āGender x Generationā])[āResponse Rateā] .apply(lambda x: int((x.count() * x.mean()))) .unstack(fill_value=0)) # Sorting columns to have females on the left and males on the right columns_sorted_gen = sorted(feasibility_gen.columns, key=lambda x: (x.split()[0], x.split()[1])) feasibility_gen = feasibility_gen[columns_sorted_gen] # Adding row totals feasibility_gen[āTotalā] = feasibility_gen.sum(axis=1) # Reset index to display the regions feasibility_gen.reset_index(inplace=True) # Adding column totals column_totals_gen = feasibility_gen.sum(numeric_only=True) column_totals_gen[āP_Region_FIPā] = āTotalā feasibility_gen = feasibility_gen.append(column_totals_gen, ignore_index=True) # Display the feasibility table with row and column totals print(feasibility_gen)
- Age Gender (FINE) Feasibility š š š¬š š§® š š» - import pandas as pd # Load the dataset data = pd.read_csv(ā/mnt/data/Angus Reid Forum USA.csvā) # Preparing the data data[āResponse Rateā] = pd.to_numeric(data[āResponse Rateā], errors=ācoerceā) data[āGender x Age Fineā] = data[āGenderā] + ā ā + data[āAge Fineā] # Calculate feasibility using combined āGender x Age Fineā category feasibility = (data.groupby([āP_Region_FIPā, āGender x Age Fineā])[āResponse Rateā] .apply(lambda x: int((x.count() * x.mean()))) .unstack(fill_value=0)) # Sorting columns to have females on the left and males on the right columns_sorted = sorted(feasibility.columns, key=lambda x: (x.split()[0], x.split()[1])) feasibility = feasibility[columns_sorted] # Adding row totals feasibility[āTotalā] = feasibility.sum(axis=1) # Reset index to display the regions feasibility.reset_index(inplace=True) # Adding column totals column_totals = feasibility.sum(numeric_only=True) column_totals[āP_Region_FIPā] = āTotalā feasibility = feasibility.append(column_totals, ignore_index=True) # Save or display the feasibility table with row and column totals print(feasibility)
- Employment Status Feasibility š¼šš¤š¢š²š š» - import pandas as pd def calculate_feasibility(csv_file_path, region_col, employment_col, response_rate_col, employment_order): # Load the dataset data = pd.read_csv(csv_file_path) # Convert the response rate to numeric, handling any non-numeric values data[response_rate_col] = pd.to_numeric(data[response_rate_col], errors=ācoerceā) # Calculate feasibility feasibility = (data.groupby([region_col, employment_col])[response_rate_col] .apply(lambda x: int((x.count() * x.mean()))) .unstack(fill_value=0)[employment_order]) # Adding row totals feasibility[āTotalā] = feasibility.sum(axis=1) # Reset index to display the regions feasibility.reset_index(inplace=True) # Adding column totals column_totals = feasibility.sum(numeric_only=True) column_totals[region_col] = āTotalā feasibility = feasibility.append(column_totals, ignore_index=True) return feasibility # Parameters for the function csv_file_path = ā/mnt/data/Angus Reid Forum USA.csvā # Path to your dataset region_col = āP_Region_FIPā # Column name for region employment_col = āFirst, we would like to ask a few questions about your main job. Are youā¦?ā # Employment status column response_rate_col = āResponse Rateā # Column name for response rate employment_order = [ āA full-time employeeā, āA part-time or contract employeeā, āA business ownerā, āSelf-employedā, āRetiredā, āUnemployed but looking for workā, āUnemployed and not looking for workā, āOtherā # Exclude any category not present in your data ] # Calculate and display the feasibility table feasibility_table = calculate_feasibility(csv_file_path, region_col, employment_col, response_rate_col, employment_order) print(feasibility_table)
- VizMin Feasibility š©šæāš¦³šØš¾āš¦±š³š©š»š§š½š§ - import pandas as pd # Load the dataset data = pd.read_csv(ā/mnt/data/Angus Reid Forum USA.csvā) # Preparing the data data[āResponse Rateā] = pd.to_numeric(data[āResponse Rateā], errors=ācoerceā) data[āViz Minā].fillna(āNot Specifiedā, inplace=True) # Calculate feasibility with āViz Minā nested within gender feasibility_viz_min = (data.groupby([āP_Region_FIPā, āGenderā, āViz Minā])[āResponse Rateā] .apply(lambda x: int((x.count() * x.mean()))) .unstack(level=[1, 2], fill_value=0)) # Preparing the columns order based on gender and Viz Min viz_min_categories = data[āViz Minā].unique() columns_order_viz_min = [(gender, viz_min) for gender in [āFemaleā, āMaleā] for viz_min in viz_min_categories] feasibility_viz_min = feasibility_viz_min.reindex(columns=columns_order_viz_min, fill_value=0) # Adding row totals feasibility_viz_min[āTotalā] = feasibility_viz_min.sum(axis=1) # Reset index to display the regions feasibility_viz_min.reset_index(inplace=True) # Adding column totals column_totals_viz_min = feasibility_viz_min.sum(numeric_only=True) column_totals_viz_min[āP_Region_FIPā] = āTotalā feasibility_viz_min = feasibility_viz_min.append(column_totals_viz_min, ignore_index=True) # Display the feasibility table with Viz Min nested within gender print(feasibility_viz_min)
- Household Income Feasibility - š š¤ š° š - import pandas as pd # Load the dataset data = pd.read_csv(ā/mnt/data/Angus Reid Forum USA.csvā) # Preparing the data data[āResponse Rateā] = pd.to_numeric(data[āResponse Rateā], errors=ācoerceā) income_column = āWhich of the following ranges best describes your total annual household income before taxes?ā # Calculate feasibility for household income income_feasibility = (data.groupby([āP_Region_FIPā, income_column])[āResponse Rateā] .apply(lambda x: int((x.count() * x.mean()))) .unstack(fill_value=0)) # Sorting columns in ascending order of income ranges income_feasibility = income_feasibility.sort_index(axis=1) # Adding row totals income_feasibility[āTotalā] = income_feasibility.sum(axis=1) # Reset index to display the regions income_feasibility.reset_index(inplace=True) # Adding column totals income_column_totals = income_feasibility.sum(numeric_only=True) income_column_totals[āP_Region_FIPā] = āTotalā income_feasibility = income_feasibility.append(income_column_totals, ignore_index=True) # Display the feasibility table with row and column totals print(income_feasibility)
- Education Feasibility -š š š āļø š import pandas as pd # Load the dataset data = pd.read_csv(ā/mnt/data/Angus Reid Forum USA.csvā) # Preparing the data data[āResponse Rateā] = pd.to_numeric(data[āResponse Rateā], errors=ācoerceā) # Calculate feasibility for Education Broad category feasibility_education = (data.groupby([āP_Region_FIPā, āEducation Broadā])[āResponse Rateā] .apply(lambda x: int((x.count() * x.mean()))) .unstack(fill_value=0)) # Adding row totals feasibility_education[āTotalā] = feasibility_education.sum(axis=1) # Reset index to display the regions feasibility_education.reset_index(inplace=True) # Adding column totals column_totals_education = feasibility_education.sum(numeric_only=True) column_totals_education[āP_Region_FIPā] = āTotalā feasibility_education = feasibility_education.append(column_totals_education, ignore_index=True) # Display the feasibility table with Education Broad category print(feasibility_education)
- Age Gender (BROAD) + Education Feasibility š¬š š š āļø š-import pandas as pd # Load the dataset data = pd.readcsv(ā/mnt/data/Angus Reid Forum USA.csvā) # Original file path # Prepare the data by converting āResponse Rateā to numeric, handling non-numeric values data[āResponse Rateā] = pd.to_numeric(data[āResponse Rateā], errors=ācoerceā) # Calculate feasibility for Age x Gender Broad category feasibility_age_gender = ( data.groupby([āP_Region_FIPā, āAge x Gender Broadā])[āResponse Rateā] .apply(lambda x: int((x.count() * x.mean()))) .unstack(fill_value=0) ) # Reordering columns for Age x Gender Broad columns_order_age_gender = [ āFemale 18-34ā, āFemale 35-54ā, āFemale 55 Plusā, āMale 18-34ā, āMale 35-54ā, āMale 55 Plusā ] feasibility_age_gender = feasibility_age_gender[columns_order_age_gender] # Rename columns for clarity in the merged table feasibility_age_gender.columns = [fāAGB{col}ā for col in feasibilityage_gender.columns] # Calculate feasibility for Education Broad category feasibility_education = ( data.groupby([āP_Region_FIPā, āEducation Broadā])[āResponse Rateā] .apply(lambda x: int((x.count() * x.mean()))) .unstack(fill_value=0) ) # Rename columns for clarity in the merged table feasibility_education.columns = [ fāEDU{col}ā if col != āP_Region_FIPā else col for col in feasibility_education.columns ] # Correctly merging the two tables on āP_Region_FIPā merged_feasibility = pd.merge(feasibility_age_gender.reset_index(), feasibility_education.reset_index(), on=āP_Region_FIPā) # Swapping the order of the columns āCollegeā with āHigh School or Lessā columns_reordered = [āP_Region_FIPā, āAGB_Female 18-34ā, āAGB_Female 35-54ā, āAGB_Female 55 Plusā, āAGB_Male 18-34ā, āAGB_Male 35-54ā, āAGB_Male 55 Plusā, āEDU_High school or lessā, āEDU_Collegeā, āEDU_University Plusā] merged_feasibility_reordered = merged_feasibility[columns_reordered] # Calculating column totals (excluding the region column) for the reordered table column_totals_reordered = merged_feasibility_reordered.iloc[:, 1:].sum().rename(āTotalā) merged_feasibility_with_totals_reordered = merged_feasibility_reordered.append(column_totals_reordered, ignore_index=True) # Setting the āP_Region_FIPā for the totals row merged_feasibility_with_totals_reordered.at[len(merged_feasibility_with_totals_reordered) - 1, āP_Region_FIPā] = āTotalā # Display the table with reordered columns print(merged_feasibility_with_totals_reordered)
- Race Feasibility - š©šæš²š³š§šØāš¦± š©āš¦° - import pandas as pd # Load the dataset file_path = ā/mnt/data/Angus Reid Forum USA.csvā # Specific file path and name data = pd.read_csv(file_path) # Preparing the data data[āResponse Rateā] = pd.to_numeric(data[āResponse Rateā], errors=ācoerceā) # Calculate feasibility based on Race race_feasibility = (data.groupby([āP_Region_FIPā, āRaceā])[āResponse Rateā] .apply(lambda x: int((x.count() * x.mean()))) .unstack(fill_value=0)) # Sort the columns by their total frequency in descending order and adjust the order race_totals = race_feasibility.sum().sort_values(ascending=False) sorted_columns = race_totals.index.tolist() # Move āTwo or more racesā and āSome other raceā to the end sorted_columns.remove(āTwo or more racesā) sorted_columns.remove(āSome other raceā) sorted_columns += [āTwo or more racesā, āSome other raceā] # Move āOther Asianā after āVietnameseā other_asian_index = sorted_columns.index(āOther Asian [e.g. Cambodian, Indonesian]ā) vietnamese_index = sorted_columns.index(āVietnameseā) sorted_columns.insert(vietnamese_index + 1, sorted_columns.pop(other_asian_index)) # Reorder the feasibility table according to the adjusted column order race_feasibility = race_feasibility[sorted_columns] # Adding row totals race_feasibility[āTotalā] = race_feasibility.sum(axis=1) # Reset index to display the regions race_feasibility.reset_index(inplace=True) # Display the race feasibility table with row and column totals print(race_feasibility)
GovAssist š
AI Assistant for Local and Regional Governments
Author: Robert Hiett
Created Date: Unknown
Last Updated Date: Unknown
Categories: No Categories
Tags: Comprehensive AI System Advisor for Australian Gov, GovDoc Assistant, AI Research Assistant, BETSY AI ASSISTANT, US AI Gov Guide
Welcome Message
Welcome to GovAssist! How can I assist with your specific government role today?
Prompt Starters
- What are your services?
- Help me generate a prompt!
- Help me develop social media content.
- Help me develop a local or federal procurement.
AI Resource Navigator š
AI Resource Navigator efficiently guides users to educational, financial, healthcare, and legal resources in the USA
Author: Teddy Ginorio
Created Date: Unknown
Last Updated Date: Unknown
Categories: No Categories
Tags: AI Resource Navigator, Non-Profit Navigator: Your AI Assistant, Business Navigator AI, US AI Gov Guide, AI Career Navigator
Welcome Message
Hello! Iām here to help you find resources across the U.S. How can I assist you today?
Prompt Starters
- How do I apply for student loans in Florida?
- Find job training programs near me
- I need help with medical bills in Ohio
- What are my options for small business grants in Illinois?
U.S. Government Expert š
Ask questions about how the U.S. Government works and how to accomplish your goals within the system.
Author: SAM POCKER
Created Date: Unknown
Last Updated Date: Unknown
Categories: No Categories
Tags: U.S. Government Expert, US AI Gov Guide
Welcome Message
Prompt Starters
Diplomatsā DEIA Strategist š
AI expert in DEIA strategies for U.S. diplomatic missions & beyond (unofficial, unclassified, beta, do not enter SBU/PII, use at your own risk, not a U.S. State Department product, all rights reserved)
Author: Donald F Kilburg III
Created Date: Unknown
Last Updated Date: Unknown
Categories: No Categories
Tags: Diplomat AI, Cybersecurity Intelligence Agent (CIA), US AI Gov Guide, Diplomatic Advisor, Agenta AI
Welcome Message
Welcome! Letās explore expert DEIA strategies for diplomatic excellence.
Prompt Starters
- Explore DEIA Strategies
- Brainstorm DEIA Initiatives
- Improve DEIA in My Work
- Increase My DEIA Score
Maple Advisor š
AI-based immigration guide
Author: Chosen Canlas (Tiktok: ADHDImmigrant)
Created Date: Unknown
Last Updated Date: Unknown
Categories: No Categories
Tags: Immigration Guide, Immigration Advisor, AI Immigration Lawyer, Relocation Advisor AI, US AI Gov Guide
Welcome Message
Welcome! Iām Maple Advisor, your AI guide for tailored Canadian immigration advice. Click here for a guide to using Maple Advisor!
Prompt Starters
- Click here for a guide to using Maple Advisor!
- Iām outside Canada and want to immigrate. Where do I start?
- How can I apply for a Canadian visa from abroad?
- Can you provide the estimated costs, timelines, and requirements for immigration or studying in Canada?
ICO guidance š
Search everything on the ICO website
Author: Targeted Provision Ltd
Created Date: Unknown
Last Updated Date: Unknown
Categories: No Categories
Tags: ICD11 Guide, ICSE Tutor, US AI Gov Guide
Welcome Message
Prompt Starters
US AI Gov Guide š
Expert AI.gov assistant
Author: lunaschtick.com š
Created Date: Unknown
Last Updated Date: Unknown
Categories: No Categories
Tags: US AI Gov Guide, AI Advisor, AI Services Advisor, Comprehensive AI System Advisor for Australian Gov, Expert AI Consultant
Welcome Message
Welcome! Iām here to assist with AI policy and technology queries.
Prompt Starters
- How does AI impact healthcare policy?
- What are the latest developments in AI ethics?
- Can you assist with AI policy drafting?
- How to ensure data privacy in AI applications?
USA š
Concise guide on USA topics, with detailed insights on request.
Author: Joseph Charlesworth
Created Date: Unknown
Last Updated Date: Unknown
Categories: No Categories
Tags: US AI Gov Guide, Expert Guide on Any Topic, Countries Guide, The complete guide to studying abroad UK and US, American Insights
Welcome Message
Hello! Ask me for brief overviews on USA topics.
Prompt Starters
- Whatās the latest US inflation rate?
- Who are the richest person in the USA now?
- Whatās the latest US News?
- Who will win the next Presidential election?
Conclusion
In the symphony of us ai gov guide, every note resonates with the promise of progress. The harmony of us ai gov guide in this composition is a testament to its versatility, making us ai gov guide the melody that will define the future of technological advancements.